cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A323330 Larger of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1550, 3100, 4790, 6200, 7750, 9580, 12400, 12922, 15500, 15290, 19160, 20330, 23950, 24800, 25844, 31000, 30580, 38320, 38750, 40660, 47900, 49600, 51688, 62000, 61160, 76640, 77500, 82150, 81320, 76450, 95800, 90454, 99200, 103376, 101650, 119750, 124000, 122320
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The terms are ordered according to the order of their lesser counterparts (A323329).

Crossrefs

Cf. A001615, A002046, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323329.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m, 1, 120000}]; s

A332326 Decimal expansion of the least positive zero of the 4th Maclaurin polynomial of cos x.

Original entry on oeis.org

1, 5, 9, 2, 4, 5, 0, 4, 3, 4, 0, 3, 6, 2, 5, 1, 3, 8, 1, 6, 6, 8, 9, 9, 8, 6, 7, 0, 4, 8, 4, 0, 0, 1, 9, 6, 9, 6, 5, 9, 5, 5, 0, 5, 6, 2, 7, 0, 7, 2, 2, 1, 7, 1, 8, 2, 1, 7, 6, 8, 6, 4, 5, 5, 1, 7, 7, 5, 6, 6, 8, 0, 7, 6, 2, 1, 2, 2, 5, 3, 4, 1, 3, 2, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2020

Keywords

Comments

The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n ^(2n)/(2n)!.
Let z(n) be the least positive zero of p(2n,x). The limit of z(n) is Pi/2 = 1.570796326..., as in A019669.

Examples

			Least positive zero = 1.592450434036251381668998670484001969...
		

Crossrefs

Programs

  • Mathematica
    z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
    t = x /. NSolve[p[4, x] == 0, x, z][[3]]
    u = RealDigits[t][[1]]
    Plot[Evaluate[p[4, x]], {x, -1, 4}]

A385852 Integers x such that there exist two integers 0

Original entry on oeis.org

79170, 150150, 158340, 161070, 232050, 237510, 300300, 316680, 322140, 395850, 450450, 464100, 468930, 474810, 475020, 483210, 554190, 570570, 600600, 622440, 633360, 641550, 644280, 696150, 712530, 750750, 791700, 805350, 937860, 949620, 950040, 963270, 966420
Offset: 1

Views

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple according to Dimitrov's definition.

Examples

			79170 is in the sequence since psi(79170) = psi(80850) = psi(81900) = 241920 = 79170 + 80850 + 81900. Other examples: (161070, 161070, 161700), (7063980, 7112490, 7112490).
		

Crossrefs

A386901 Integers y such that there exist two integers 0

Original entry on oeis.org

80850, 158340, 161070, 161700, 232050, 242550, 316680, 322140, 323400, 404250, 464100, 474810, 475020, 483210, 485100, 485940, 565950, 633360, 641550, 644280, 646800, 662340, 696150, 727650, 791700, 805350, 808500, 963270, 966420, 967890, 970200, 971880
Offset: 1

Views

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			158340 is in the sequence since psi(150150) = psi(158340) = psi(175350) = 483840 = 150150 + 158340 + 175350. Other examples: (232050, 232050, 261660), (7091700, 7098630, 7098630).
		

Crossrefs

A323331 Smallest member of sociable quadruples using Dedekind psi function (A001615).

Original entry on oeis.org

11398670, 22797340, 38369450, 45594680, 56993350, 59334310, 76738900, 91189360, 113986700, 118668620, 153477800, 182378720, 209524210, 227973400, 237337240, 268586150, 284966750, 306955600, 364757440, 419048420, 455946800, 474674480, 537172300, 539867650, 569933500
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

Numbers k whose iterations of k -> A001615(k) - k are cyclic with a period of 4, and in each cyclic quadruple k is the least of the 4 members.

Examples

			11398670 is in the sequence since the iterations of k -> A001615(k) - k are cyclic with a period of 4: 11398670, 11475730, 12474350, 14093650, 11398670, ... and 11398670 is the smallest member of the quadruple.
		

Crossrefs

Programs

  • Mathematica
    t[0]=0; t[1]=0; t[n_]:=(Times@@(1+1/Transpose[FactorInteger[n]][[1]])-1)*n;
    seq[n_]:=NestList [t, n, 4][[2;; 5]] ; aQ[n_] := Module[ {s=seq[n]}, n==Min[s] && Count[s, n]==1]; s={}; Do[If[aQ[n], AppendTo[s, n]], {n, 1, 10^9}]; s
Showing 1-5 of 5 results.