This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323332 #21 May 06 2025 09:31:43 %S A323332 1,6,12,12,24,30,36,48,72,56,96,144,108,180,216,132,150,192,288,182, %T A323332 336,360,432,360,324,384,576,306,648,392,380,672,720,864,672,792,900, %U A323332 768,552,1152,750,1296,1080,1092,972,1344,1440,870,1728,2160,992,1584 %N A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)). %C A323332 The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661). %C A323332 The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - _Amiram Eldar_, May 06 2025 %H A323332 Amiram Eldar, <a href="/A323332/b323332.txt">Table of n, a(n) for n = 1..10000</a> %H A323332 Eckford Cohen, <a href="https://doi.org/10.1090/S0002-9939-1961-0132717-6">A property of Dedekind's psi-function</a>, Proceedings of the American Mathematical Society, Vol. 12, No. 6 (1961), p. 996. %t A323332 psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after _T. D. Noe_ at A001615 and _Harvey P. Dale_ at A001694 *) %o A323332 (Python) %o A323332 from math import isqrt, prod %o A323332 from sympy import mobius, integer_nthroot, primefactors %o A323332 def A323332(n): %o A323332 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A323332 def bisection(f,kmin=0,kmax=1): %o A323332 while f(kmax) > kmax: kmax <<= 1 %o A323332 while kmax-kmin > 1: %o A323332 kmid = kmax+kmin>>1 %o A323332 if f(kmid) <= kmid: %o A323332 kmax = kmid %o A323332 else: %o A323332 kmin = kmid %o A323332 return kmax %o A323332 def f(x): %o A323332 c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0 %o A323332 j = isqrt(x) %o A323332 while j>1: %o A323332 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A323332 w = squarefreepi(k2-1) %o A323332 c -= j*(w-l) %o A323332 l, j = w, isqrt(x//k2**3) %o A323332 return c+l %o A323332 a = primefactors(m:=bisection(f,n,n)) %o A323332 return m*prod(p+1 for p in a)//prod(a) # _Chai Wah Wu_, Sep 14 2024 %Y A323332 Cf. A001615, A001694, A013661, A082695, A112526. %Y A323332 Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697. %K A323332 nonn %O A323332 1,2 %A A323332 _Amiram Eldar_, Jan 11 2019