cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

This page as a plain text file.
%I A323332 #21 May 06 2025 09:31:43
%S A323332 1,6,12,12,24,30,36,48,72,56,96,144,108,180,216,132,150,192,288,182,
%T A323332 336,360,432,360,324,384,576,306,648,392,380,672,720,864,672,792,900,
%U A323332 768,552,1152,750,1296,1080,1092,972,1344,1440,870,1728,2160,992,1584
%N A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).
%C A323332 The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
%C A323332 The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - _Amiram Eldar_, May 06 2025
%H A323332 Amiram Eldar, <a href="/A323332/b323332.txt">Table of n, a(n) for n = 1..10000</a>
%H A323332 Eckford Cohen, <a href="https://doi.org/10.1090/S0002-9939-1961-0132717-6">A property of Dedekind's psi-function</a>, Proceedings of the American Mathematical Society, Vol. 12, No. 6 (1961), p. 996.
%t A323332 psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after _T. D. Noe_ at A001615 and _Harvey P. Dale_ at A001694 *)
%o A323332 (Python)
%o A323332 from math import isqrt, prod
%o A323332 from sympy import mobius, integer_nthroot, primefactors
%o A323332 def A323332(n):
%o A323332     def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o A323332     def bisection(f,kmin=0,kmax=1):
%o A323332         while f(kmax) > kmax: kmax <<= 1
%o A323332         while kmax-kmin > 1:
%o A323332             kmid = kmax+kmin>>1
%o A323332             if f(kmid) <= kmid:
%o A323332                 kmax = kmid
%o A323332             else:
%o A323332                 kmin = kmid
%o A323332         return kmax
%o A323332     def f(x):
%o A323332         c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
%o A323332         j = isqrt(x)
%o A323332         while j>1:
%o A323332             k2 = integer_nthroot(x//j**2,3)[0]+1
%o A323332             w = squarefreepi(k2-1)
%o A323332             c -= j*(w-l)
%o A323332             l, j = w, isqrt(x//k2**3)
%o A323332         return c+l
%o A323332     a = primefactors(m:=bisection(f,n,n))
%o A323332     return m*prod(p+1 for p in a)//prod(a) # _Chai Wah Wu_, Sep 14 2024
%Y A323332 Cf. A001615, A001694, A013661, A082695, A112526.
%Y A323332 Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.
%K A323332 nonn
%O A323332 1,2
%A A323332 _Amiram Eldar_, Jan 11 2019