This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323334 #21 Jan 15 2021 21:33:13 %S A323334 1,15,90,310,990,2220,5300,9660,17130,28670,52848,75696,128541,183393, %T A323334 257628,344316,529038,683316,1001110,1256010,1607004,2049490,2837700, %U A323334 3330636,4177186,5150340,6273810,7432702,9779991,11124711,14381168,16610640,19542393,23032799,26873769 %N A323334 Sum of distinct products i*j*k with 1 <= i, j, k <= n. %H A323334 Michael S. Branicky, <a href="/A323334/b323334.txt">Table of n, a(n) for n = 1..2302</a> (terms 1..500 from Seiichi Manyama) %e A323334 a(2) = 1 + 2 + 4 + 8 = 15. %e A323334 a(3) = 1 + 2 + 3 + 4 + 6 + 8 + 9 + 12 + 18 + 27 = 90. %t A323334 a[n_] := Table[i j k, {i, n}, {j, n}, {k, n}] // Flatten // Union // Total; %t A323334 Array[a, 35] (* _Jean-François Alcover_, Nov 25 2020 *) %o A323334 (Python) %o A323334 def aupton(terms): %o A323334 alst, s, pset = [], 0, set() %o A323334 for n in range(1, terms): %o A323334 for i in range(1, n+1): %o A323334 for j in range(i, n+1): %o A323334 p = i*j*n # k = n %o A323334 if p not in pset: %o A323334 pset.add(p) %o A323334 s += p %o A323334 alst.append(s) %o A323334 return alst %o A323334 print(aupton(36)) # _Michael S. Branicky_, Jan 15 2021 %Y A323334 Column 3 of A321163. %Y A323334 Cf. A027425. %K A323334 nonn %O A323334 1,2 %A A323334 _Seiichi Manyama_, Jan 11 2019