cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323335 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: the point with coordinates X=k and Y=n is the T(n, k)-th term of the first type of Wunderlich curve.

This page as a plain text file.
%I A323335 #6 Jan 15 2019 18:44:22
%S A323335 1,2,6,3,5,7,48,4,8,16,49,47,9,15,17,54,50,46,10,14,18,55,53,51,45,11,
%T A323335 13,19,56,60,52,44,40,12,20,24,57,59,61,43,41,39,21,23,25,462,58,62,
%U A323335 70,42,38,30,22,26,106,463,461,63,69,71,37,31,29,27,105,107
%N A323335 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: the point with coordinates X=k and Y=n is the T(n, k)-th term of the first type of Wunderlich curve.
%C A323335 Each natural numbers appears once in the sequence.
%H A323335 Robert Dickau, <a href="http://robertdickau.com/wunderlich.html">Wunderlich Curves</a>
%H A323335 Wolfram Demonstrations Project, <a href="https://demonstrations.wolfram.com/WunderlichCurves/">Wunderlich Curves</a>
%H A323335 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A323335 T(A323259(n), A323258(n)) = n.
%e A323335 Array T(n, k) begins:
%e A323335   n\k|   0   1   2   3   4   5   6   7   8
%e A323335   ---+------------------------------------
%e A323335   0  |   1   6---7  16--17--18--19  24--25
%e A323335      |   |   |   |   |           |   |   |
%e A323335   1  |   2   5   8  15--14--13  20  23  26
%e A323335      |   |   |   |           |   |   |   |
%e A323335   2  |   3---4   9--10--11--12  21--22  27
%e A323335      |                                   |
%e A323335   3  |  48--47--46--45  40--39  30--29--28
%e A323335      |   |           |   |   |   |
%e A323335   4  |  49--50--51  44  41  38  31--32--33
%e A323335      |           |   |   |   |           |
%e A323335   5  |  54--53--52  43--42  37--36--35--34
%e A323335      |   |
%e A323335   6  |  55  60--61  70--71--72--73  78--79
%e A323335      |   |   |   |   |           |   |   |
%e A323335   7  |  56  59  62  69--68--67  74  77  80
%e A323335      |   |   |   |           |   |   |   |
%e A323335   8  |  57--58  63--64--65--66  75--76  81
%Y A323335 See A163334 for a similar sequence.
%Y A323335 Cf. A323258, A323259.
%K A323335 nonn,tabl
%O A323335 0,2
%A A323335 _Rémy Sigrist_, Jan 11 2019