This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323335 #6 Jan 15 2019 18:44:22 %S A323335 1,2,6,3,5,7,48,4,8,16,49,47,9,15,17,54,50,46,10,14,18,55,53,51,45,11, %T A323335 13,19,56,60,52,44,40,12,20,24,57,59,61,43,41,39,21,23,25,462,58,62, %U A323335 70,42,38,30,22,26,106,463,461,63,69,71,37,31,29,27,105,107 %N A323335 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: the point with coordinates X=k and Y=n is the T(n, k)-th term of the first type of Wunderlich curve. %C A323335 Each natural numbers appears once in the sequence. %H A323335 Robert Dickau, <a href="http://robertdickau.com/wunderlich.html">Wunderlich Curves</a> %H A323335 Wolfram Demonstrations Project, <a href="https://demonstrations.wolfram.com/WunderlichCurves/">Wunderlich Curves</a> %H A323335 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A323335 T(A323259(n), A323258(n)) = n. %e A323335 Array T(n, k) begins: %e A323335 n\k| 0 1 2 3 4 5 6 7 8 %e A323335 ---+------------------------------------ %e A323335 0 | 1 6---7 16--17--18--19 24--25 %e A323335 | | | | | | | | %e A323335 1 | 2 5 8 15--14--13 20 23 26 %e A323335 | | | | | | | | %e A323335 2 | 3---4 9--10--11--12 21--22 27 %e A323335 | | %e A323335 3 | 48--47--46--45 40--39 30--29--28 %e A323335 | | | | | | %e A323335 4 | 49--50--51 44 41 38 31--32--33 %e A323335 | | | | | | %e A323335 5 | 54--53--52 43--42 37--36--35--34 %e A323335 | | %e A323335 6 | 55 60--61 70--71--72--73 78--79 %e A323335 | | | | | | | | %e A323335 7 | 56 59 62 69--68--67 74 77 80 %e A323335 | | | | | | | | %e A323335 8 | 57--58 63--64--65--66 75--76 81 %Y A323335 See A163334 for a similar sequence. %Y A323335 Cf. A323258, A323259. %K A323335 nonn,tabl %O A323335 0,2 %A A323335 _Rémy Sigrist_, Jan 11 2019