A323347 Number of integer partitions of n whose parts can be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.
1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 6, 2, 11, 2, 7, 7, 10, 2, 18, 2, 17, 13, 9, 2, 50, 3, 10, 24, 34, 2, 85, 2, 51, 46, 12, 9, 261, 2, 13, 80, 257, 2, 258, 2, 323, 431, 15, 2, 1533, 3, 227, 206, 1165, 2, 971, 483, 2409, 309, 18, 2
Offset: 0
Examples
The a(8) = 5 integer partitions are (8), (44), (2222), (3311), (11111111). The a(12) = 11 integer partitions (C = 12): (C) (66) (444) (3333) (4422) (5511) (222222) (332211) (22221111) (222111111) (111111111111) For example, the arrangements of (222111111) are: [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1] [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1] [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; Table[Length[Select[IntegerPartitions[n],!Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]
Formula
a(p) = 2 and a(p^2) = 3 for p prime (see comment). - Chai Wah Wu, Jan 14 2019
Extensions
a(17)-a(53) from Chai Wah Wu, Jan 15 2019
a(54)-a(59) from Chai Wah Wu, Jan 16 2019
Comments