cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323377 Square array read by ascending antidiagonals: T(n,k) = Kronecker(prime(n)/prime(k)), n, k >= 1.

This page as a plain text file.
%I A323377 #27 Jan 20 2019 09:45:06
%S A323377 0,-1,-1,-1,0,-1,1,-1,-1,1,-1,1,0,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,0,1,1,
%T A323377 1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,0,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,
%U A323377 1,1,-1,1,-1,-1,-1,-1,0,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1
%N A323377 Square array read by ascending antidiagonals: T(n,k) = Kronecker(prime(n)/prime(k)), n, k >= 1.
%C A323377 The n-th row is the same as the n-th column if and only if n = 1 or prime(n) == 1 (mod 4).
%C A323377 In general, for any m != 0 and n > 0, Kronecker symbol (m/n) can be written as the product of the terms of this table and the terms of the form (-1/p) where p is any prime.
%C A323377 According to Chebyshev's bias, there seem to be more -1's than 1's among the first terms of any row or any column. One can see from the table in the example section that there are 54 -1's and 36 1's in the upper left 10 X 10 square of the table. There are 5158 -1's and 4742 1's in the upper left 100 X 100 square of the table.
%H A323377 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a>
%F A323377 T(n,k) = A215200(prime(n) + prime(k), prime(k)).
%e A323377 Table begins
%e A323377      |  k  |  1   2   3   4   5   6   7   8   9  10  ...
%e A323377    n | p() |  2   3   5   7  11  13  17  19  23  29  ...
%e A323377   ---+-----+--------------------------------------------
%e A323377    1 |   2 |  0, -1, -1,  1, -1, -1,  1, -1,  1, -1, ...
%e A323377    2 |   3 | -1,  0, -1, -1,  1,  1, -1, -1,  1, -1, ...
%e A323377    3 |   5 | -1, -1,  0, -1,  1, -1, -1,  1, -1,  1, ...
%e A323377    4 |   7 |  1,  1, -1,  0, -1, -1, -1,  1, -1,  1, ...
%e A323377    5 |  11 | -1, -1,  1,  1,  0, -1, -1,  1, -1, -1, ...
%e A323377    6 |  13 | -1,  1, -1, -1, -1,  0,  1, -1,  1,  1, ...
%e A323377    7 |  17 |  1, -1, -1, -1, -1,  1,  0,  1, -1, -1, ...
%e A323377    8 |  19 | -1,  1,  1, -1, -1, -1,  1,  0, -1, -1, ...
%e A323377    9 |  23 |  1, -1, -1,  1,  1,  1, -1,  1,  0,  1, ...
%e A323377   10 |  29 | -1, -1,  1,  1, -1,  1, -1, -1,  1,  0, ...
%e A323377   ...
%o A323377 (PARI) T(n,k) = kronecker(prime(n), prime(k))
%Y A323377 Cf. A215200.
%Y A323377 Cf. A226523 (1st row and 1st column), A257834 (2nd row), A134323 (2nd column).
%K A323377 sign,tabl
%O A323377 1,1
%A A323377 _Jianing Song_, Jan 12 2019