A323384 Smallest number with exactly n divisors in Eisenstein integers.
1, 2, 3, 7, 9, 6, 27, 14, 12, 18, 243, 21, 729, 54, 36, 56, 6561, 60, 19683, 63, 108, 486, 177147, 42, 144, 1458, 147, 189, 4782969, 180, 14348907, 182, 972, 13122, 432, 84, 387420489, 39366, 2916, 126, 3486784401, 540, 10460353203, 1701, 441, 354294, 94143178827, 168, 1728, 720
Offset: 1
Keywords
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. The divisors of 14 in Eisenstein integers are 1, 2, 2 + w, 2 + w', 7, 4 + 2*w, 4 + 2*w', 14 and there associations, and 14 is the smallest number having exactly 8 divisors in Eisenstein integers, so a(8) = 14. The divisors of 21 in Eisenstein integers are 1, 2*w - 1, 3, 2 + w, 2 + w', 5 - w, 5 - w', 6 + 3*w, 6 + 3*w', 7, 14*w - 7, 21 and there associations, and 21 is the smallest number having exactly 12 divisors in Eisenstein integers, so a(12) = 21.
Programs
-
PARI
a(n) = if(isprime(n)&&n>2, 3^((n-1)/2), my(k=1); while(A319442(k)!=n, k++); k)
Formula
For primes p > 2, a(p) = 3^((p-1)/2).
Comments