A323390 Total number of primes that are both left-truncatable and right-truncatable in base n.
0, 2, 3, 5, 9, 7, 22, 8, 15, 6, 35, 11, 37, 17, 22, 12, 69, 12, 68, 18, 44, 13, 145, 16, 47, 20, 77, 13, 291, 15, 89, 27, 74, 20, 241, 18, 106, 25, 134, 15, 450, 23, 144, 33, 131, 24, 491, 27, 235, 29, 187, 23, 575, 30, 218, 31, 183, 25, 1377, 26, 247, 37, 231
Offset: 2
Examples
For n = 2, there are no both-truncatable primes, therefore a(2) = 0. For n = 3, there are 2 both-truncatable primes: 2, 23. For n = 4, there are 3 both-truncatable primes: 2, 3, 11. For n = 5, there are 5 both-truncatable primes: 2, 3, 13, 17, 67. For n = 6, there are 9 both-truncatable primes: 2, 3, 5, 17, 23, 83, 191, 479, 839.
Links
- Chris Caldwell, right-truncatable prime, The Prime Glossary.
- Eric Weisstein's World of Mathematics, Truncatable Prime
Programs
-
PARI
digitsToNum(d, base) = sum(k=1, #d, base^(k-1) * d[k]); isLeftTruncatable(d, base) = my(ok=1); for(k=1, #d, if(!isprime(digitsToNum(d[1..k], base)), ok=0; break)); ok; generateFromPrefix(p, base) = my(seq = [p]); for(n=1, base-1, my(t=concat(n, p)); if(isprime(digitsToNum(t, base)), seq=concat(seq, select(v -> isLeftTruncatable(v, base), generateFromPrefix(t, base))))); seq; bothTruncatablePrimesInBase(base) = my(t=[]); my(P=primes(primepi(base-1))); for(k=1, #P, t=concat(t, generateFromPrefix([P[k]], base))); vector(#t, k, digitsToNum(t[k], base)); a(n) = #(bothTruncatablePrimesInBase(n));