cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323393 a(n) is the number of divisors of A323392(n) in Eisenstein integers.

This page as a plain text file.
%I A323393 #17 Mar 02 2020 09:39:06
%S A323393 1,2,3,6,9,10,12,15,24,36,40,48,60,72,80,96,100,144,160,192,240,288,
%T A323393 320,324,336,384,400,432,480,576,640,648,768,960,1152,1280,1296,1344,
%U A323393 1536,1600,1728,1920,2160,2560,2592,2880,3200,3456,3600,3840,4320,4608,5120,5760,6144,6400,7200,7680
%N A323393 a(n) is the number of divisors of A323392(n) in Eisenstein integers.
%C A323393 Records in A319442.
%C A323393 Analog of A002183 and A302249, which list the records of number of divisors in rational integers and Gaussian integers respectively.
%C A323393 It seems that 15 is the largest odd term.
%H A323393 Amiram Eldar, <a href="/A323393/b323393.txt">Table of n, a(n) for n = 1..100</a>
%H A323393 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a>
%F A323393 a(n) = A319442(A323392(n)).
%e A323393 252 has 60 divisors up to association in Eisenstein integers, more than any previous positive integers, so 60 is a term.
%t A323393 f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; emax = 0; Do[eis = eisNumDiv[n]; If[eis > emax, emax = eis; AppendTo[seq, eis]], {n, 1, 10^6}]; seq (* _Amiram Eldar_, Mar 02 2020 *)
%o A323393 (PARI)
%o A323393 my(r=0, t); for(n=1, 10^6, t=A319442(n); if(t>r, r=t; print1(r, ", ")));
%Y A323393 Cf. A002183, A302249, A319442.
%Y A323393 For the numbers whose number of divisors set new records see A323392.
%K A323393 nonn
%O A323393 1,2
%A A323393 _Jianing Song_, Jan 13 2019