A323425 Number of ways n people in a line can each choose two others both on the same side of them.
1, 0, 0, 0, 9, 648, 57600, 6615000, 972504225, 179499220992, 40789783609344, 11212877910528000, 3671848787797265625, 1413385410212064432000, 632129969391038455873536, 325176984737061807515098752, 190691488202627199302740850625, 126479088749202444199526400000000
Offset: 0
Keywords
Examples
Example: For n = 4, with four people ABCD, A can choose any two of {B, C, D} (3 choices), B can choose {C, D} (1 choice), C can choose {A, B} (1 choice), and D can choose any two of {A, B, C} (3 choices), so there are 3*1*1*3=9 possible overall choices and a(4) = 9. Example: For n = 5, with five people ABCDE, A can choose any two of {B, C, D, E} (6 choices), B can choose any two of {C, D, E} (3 choices), C can choose either {A, B} or {D, E} (2 choices), D can choose any two of {A, B, C} (3 choices), E can choose any two of {A, B, C, D} (6 choices), so a(5) = 6*3*2*3*6 = 648.
Programs
-
Haskell
a n = product [(k-1)*(k-2) `div` 2 + (n-k)*(n-k-1) `div` 2 | k<-[1..n]]
-
Mathematica
Table[Product[Binomial[k-1, 2] + Binomial[n-k, 2], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 15 2019 *)
Formula
a(n) = Product_{k = 1..n} ( binomial(k-1, 2) + binomial(n-k, 2) ).
a(n) ~ exp(Pi*(n/2 - 1) - 2*n) * n^(2*n) / 2^n. - Vaclav Kotesovec, Jan 15 2019
Extensions
More terms from Vaclav Kotesovec, Jan 15 2019