cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323428 Primes p such that the concatenation of p^3, p^2, p and 1 is prime.

This page as a plain text file.
%I A323428 #11 Jan 15 2019 12:13:39
%S A323428 37,79,967,3181,3463,3607,3643,3691,3931,4657,5227,5419,5569,5953,
%T A323428 6217,6379,6529,7417,7603,7753,7759,8527,8887,9049,9277,9343,9679,
%U A323428 9829,9871,31723,32323,32983,33151,33601,34039,35227,36529,36913,37189,38329,38707,38749,39097,40123,41149,41479,42073
%N A323428 Primes p such that the concatenation of p^3, p^2, p and 1 is prime.
%C A323428 All terms == 1 (mod 6).
%H A323428 Robert Israel, <a href="/A323428/b323428.txt">Table of n, a(n) for n = 1..10000</a>
%e A323428 a(3)=967 is a term because 967 is prime and 9042310639350899671 is prime, where 967^3=904231063 and 967^2=935089.
%p A323428 cat4:= proc(x) local t;
%p A323428   t:= 10*x+1;
%p A323428   t:= x^2*10^(1+ilog10(t))+t;
%p A323428   x^3*10^(1+ilog10(t))+t;
%p A323428 end proc:
%p A323428 select(t -> isprime(t) and isprime(cat4(t)), [seq(i,i=1..10^5,6)]);
%t A323428 pppQ[n_]:=PrimeQ[FromDigits[IntegerDigits/@Join[n^3, n^2, n, 1]]]; Select[Prime[Range[4500]], pppQ] (* _Vincenzo Librandi_, Jan 15 2019 *)
%Y A323428 Cf. A323427.
%K A323428 nonn,base
%O A323428 1,1
%A A323428 _J. M. Bergot_ and _Robert Israel_, Jan 14 2019