This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323434 #11 May 18 2021 06:31:28 %S A323434 1,1,1,3,3,5,7,9,11,15,20,24,31,38,48,59,72,86,106,125,150,180,213, %T A323434 250,296,347,407,477,555,645,751,869,1003,1161,1334,1534,1763,2018, %U A323434 2306,2637,3002,3418,3886,4409,4994,5659,6390,7214,8135,9160,10300,11580,12990 %N A323434 Number of ways to split a strict integer partition of n into consecutive subsequences of equal length. %H A323434 Alois P. Heinz, <a href="/A323434/b323434.txt">Table of n, a(n) for n = 0..7000</a> %F A323434 a(n) = Sum_y A000005(k), where the sum is over all strict integer partitions of n and k is the number of parts. %e A323434 The a(10) = 20 split partitions: %e A323434 [10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1] %e A323434 . %e A323434 [9] [8] [7] [6] [4 3] %e A323434 [1] [2] [3] [4] [2 1] %e A323434 . %e A323434 [7] [6] [5] [5] %e A323434 [2] [3] [4] [3] %e A323434 [1] [1] [1] [2] %e A323434 . %e A323434 [4] %e A323434 [3] %e A323434 [2] %e A323434 [1] %p A323434 b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, %p A323434 `if`(n=0, numtheory[tau](t), b(n, i-1, t)+ %p A323434 b(n-i, min(n-i, i-1), t+1))) %p A323434 end: %p A323434 a:= n-> `if`(n=0, 1, b(n$2, 0)): %p A323434 seq(a(n), n=0..60); # _Alois P. Heinz_, Jan 15 2019 %t A323434 Table[Sum[Length[Divisors[Length[ptn]]],{ptn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}] %t A323434 (* Second program: *) %t A323434 b[n_, i_, t_] := b[n, i, t] = If[n>i(i+1)/2, 0, %t A323434 If[n == 0, DivisorSigma[0, t], b[n, i-1, t] + %t A323434 b[n-i, Min[n-i, i-1], t+1]]]; %t A323434 a[n_] := If[n == 0, 1, b[n, n, 0]]; %t A323434 a /@ Range[0, 60] (* _Jean-François Alcover_, May 18 2021, after _Alois P. Heinz_ *) %Y A323434 Cf. A000005, A000219, A101509, A117433, A316245, A319066, A319794, A323295, A323301, A323431, A323433. %K A323434 nonn %O A323434 0,4 %A A323434 _Gus Wiseman_, Jan 15 2019