This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323436 #4 Jan 15 2019 18:45:43 %S A323436 1,1,1,1,2,1,2,1,3,2,2,1,3,1,2,2,5,1,4,1,3,2,2,1,5,2,2,3,3,1,4,1,7,2, %T A323436 2,2,8,1,2,2,5,1,4,1,3,3,2,1,7,2,4,2,3,1,7,2,5,2,2,1,8,1,2,3,11,2,4,1, %U A323436 3,2,4,1,12,1,2,4,3,2,4,1,7,5,2,1,8,2,2 %N A323436 Number of plane partitions whose parts are the prime indices of n. %C A323436 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing. %C A323436 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A323436 The a(120) = 12 plane partitions: %e A323436 32111 %e A323436 . %e A323436 311 321 3111 3211 %e A323436 21 11 2 1 %e A323436 . %e A323436 31 32 311 321 %e A323436 21 11 2 1 %e A323436 1 1 1 1 %e A323436 . %e A323436 31 32 %e A323436 2 1 %e A323436 1 1 %e A323436 1 1 %e A323436 . %e A323436 3 %e A323436 2 %e A323436 1 %e A323436 1 %e A323436 1 %t A323436 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A323436 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A323436 ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; %t A323436 Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}] %Y A323436 Cf. A000085, A000219, A003293, A056239, A112798, A114736, A117433, A138178, A296188, A299968. %Y A323436 Cf. A323300, A323429, A323437, A323438, A323439. %K A323436 nonn %O A323436 0,5 %A A323436 _Gus Wiseman_, Jan 15 2019