cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323436 Number of plane partitions whose parts are the prime indices of n.

This page as a plain text file.
%I A323436 #4 Jan 15 2019 18:45:43
%S A323436 1,1,1,1,2,1,2,1,3,2,2,1,3,1,2,2,5,1,4,1,3,2,2,1,5,2,2,3,3,1,4,1,7,2,
%T A323436 2,2,8,1,2,2,5,1,4,1,3,3,2,1,7,2,4,2,3,1,7,2,5,2,2,1,8,1,2,3,11,2,4,1,
%U A323436 3,2,4,1,12,1,2,4,3,2,4,1,7,5,2,1,8,2,2
%N A323436 Number of plane partitions whose parts are the prime indices of n.
%C A323436 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.
%C A323436 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A323436 The a(120) = 12 plane partitions:
%e A323436   32111
%e A323436 .
%e A323436   311   321   3111   3211
%e A323436   21    11    2      1
%e A323436 .
%e A323436   31   32   311   321
%e A323436   21   11   2     1
%e A323436   1    1    1     1
%e A323436 .
%e A323436   31   32
%e A323436   2    1
%e A323436   1    1
%e A323436   1    1
%e A323436 .
%e A323436   3
%e A323436   2
%e A323436   1
%e A323436   1
%e A323436   1
%t A323436 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323436 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323436 ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
%t A323436 Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}]
%Y A323436 Cf. A000085, A000219, A003293, A056239, A112798, A114736, A117433, A138178, A296188, A299968.
%Y A323436 Cf. A323300, A323429, A323437, A323438, A323439.
%K A323436 nonn
%O A323436 0,5
%A A323436 _Gus Wiseman_, Jan 15 2019