A323438 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly increasing.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 10, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 13, 1, 2, 3, 4, 2, 4, 1, 12, 5, 2, 1, 10, 2
Offset: 1
Keywords
Examples
The a(96) = 19 tableaux: 111112 . 111 1111 1112 11111 11112 112 12 11 2 1 . 11 111 111 112 1111 1112 11 11 12 11 1 1 12 2 1 1 2 1 . 11 11 111 112 11 12 1 1 1 1 1 1 2 1 2 1 . 11 12 1 1 1 1 1 1 2 1 . 1 1 1 1 1 2
Links
- Wikipedia, Young tableau
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Length[Select[ptnplane[y],And[And@@LessEqual@@@#,And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])]&]],{y,100}]
Comments