A323439 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are strictly increasing.
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 4, 1, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 4, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 4, 1, 0, 2, 4, 1, 0, 1, 2, 1, 0, 2, 4, 1, 0, 0, 2, 1, 0, 2, 2, 2
Offset: 1
Keywords
Examples
The a(630) = 8 tableaux: 123 124 1234 24 23 2 . 12 12 123 124 23 24 2 2 4 3 4 3 . 12 2 3 4
Links
- Wikipedia, Young tableau
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Length[Select[ptnplane[y],And[And@@Less@@@#,And@@(Less@@@DeleteCases[Transpose[PadRight[#]],0,{2}]),And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])]&]],{y,100}]
Comments