cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323450 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.

This page as a plain text file.
%I A323450 #16 Aug 19 2020 10:07:49
%S A323450 1,1,3,6,14,26,56,103,203,374,702,1262,2306,4078,7242,12628,21988,
%T A323450 37756,64682,109606,185082,309958,516932,856221,1412461,2316416,
%U A323450 3783552
%N A323450 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.
%C A323450 A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers.
%H A323450 nLab, <a href="https://ncatlab.org/nlab/show/Young+diagram">Young Diagram</a>.
%H A323450 The Unapologetic Mathematician weblog, <a href="https://unapologetic.wordpress.com/2011/02/02/generalized-young-tableaux/">Generalized Young Tableaux</a>.
%e A323450 The a(4) = 14 generalized Young tableaux:
%e A323450   4   1 3   2 2   1 1 2   1 1 1 1
%e A323450 .
%e A323450   1   2   1 1   1 2   1 1   1 1 1
%e A323450   3   2   2     1     1 1   1
%e A323450 .
%e A323450   1   1 1
%e A323450   1   1
%e A323450   2   1
%e A323450 .
%e A323450   1
%e A323450   1
%e A323450   1
%e A323450   1
%e A323450 The a(5) = 26 generalized Young tableaux:
%e A323450   5   1 4   2 3   1 1 3   1 2 2   1 1 1 2   1 1 1 1 1
%e A323450 .
%e A323450   1   2   1 1   1 3   1 2   1 1   1 1 1   1 1 2   1 1 1   1 1 1 1
%e A323450   4   3   3     1     2     1 2   2       1       1 1     1
%e A323450 .
%e A323450   1   1   1 1   1 2   1 1   1 1 1
%e A323450   1   2   1     1     1 1   1
%e A323450   3   2   2     1     1     1
%e A323450 .
%e A323450   1   1 1
%e A323450   1   1
%e A323450   1   1
%e A323450   2   1
%e A323450 .
%e A323450   1
%e A323450   1
%e A323450   1
%e A323450   1
%e A323450   1
%t A323450 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323450 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323450 ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]];
%t A323450 Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]],{y,IntegerPartitions[n]}],{n,10}]
%Y A323450 Cf. A000085, A000219, A003293, A053529, A114736, A138178, A296188, A299968.
%Y A323450 Cf. A323436, A323437, A323438, A323439, A323451.
%K A323450 nonn,more
%O A323450 0,3
%A A323450 _Gus Wiseman_, Jan 16 2019
%E A323450 a(16)-a(26) from _Seiichi Manyama_, Aug 19 2020