This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323450 #16 Aug 19 2020 10:07:49 %S A323450 1,1,3,6,14,26,56,103,203,374,702,1262,2306,4078,7242,12628,21988, %T A323450 37756,64682,109606,185082,309958,516932,856221,1412461,2316416, %U A323450 3783552 %N A323450 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing. %C A323450 A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. %H A323450 nLab, <a href="https://ncatlab.org/nlab/show/Young+diagram">Young Diagram</a>. %H A323450 The Unapologetic Mathematician weblog, <a href="https://unapologetic.wordpress.com/2011/02/02/generalized-young-tableaux/">Generalized Young Tableaux</a>. %e A323450 The a(4) = 14 generalized Young tableaux: %e A323450 4 1 3 2 2 1 1 2 1 1 1 1 %e A323450 . %e A323450 1 2 1 1 1 2 1 1 1 1 1 %e A323450 3 2 2 1 1 1 1 %e A323450 . %e A323450 1 1 1 %e A323450 1 1 %e A323450 2 1 %e A323450 . %e A323450 1 %e A323450 1 %e A323450 1 %e A323450 1 %e A323450 The a(5) = 26 generalized Young tableaux: %e A323450 5 1 4 2 3 1 1 3 1 2 2 1 1 1 2 1 1 1 1 1 %e A323450 . %e A323450 1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 %e A323450 4 3 3 1 2 1 2 2 1 1 1 1 %e A323450 . %e A323450 1 1 1 1 1 2 1 1 1 1 1 %e A323450 1 2 1 1 1 1 1 %e A323450 3 2 2 1 1 1 %e A323450 . %e A323450 1 1 1 %e A323450 1 1 %e A323450 1 1 %e A323450 2 1 %e A323450 . %e A323450 1 %e A323450 1 %e A323450 1 %e A323450 1 %e A323450 1 %t A323450 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A323450 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A323450 ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]]; %t A323450 Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]],{y,IntegerPartitions[n]}],{n,10}] %Y A323450 Cf. A000085, A000219, A003293, A053529, A114736, A138178, A296188, A299968. %Y A323450 Cf. A323436, A323437, A323438, A323439, A323451. %K A323450 nonn,more %O A323450 0,3 %A A323450 _Gus Wiseman_, Jan 16 2019 %E A323450 a(16)-a(26) from _Seiichi Manyama_, Aug 19 2020