cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323453 Largest number that can be obtained by starting with 1 and applying "Choix de Bruxelles (version 2)" (see A323460) n times.

Original entry on oeis.org

1, 2, 4, 8, 16, 112, 224, 512, 4416, 44112, 88224, 816448, 8164416, 81644112, 811288224, 8112816448, 81128164416, 811281644112, 8112811288224, 81128112816448, 811281128164416, 8112811281644112, 81128112811288224, 811281128112816448, 8118112281128164416, 81181122811281644112
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2019

Keywords

Comments

Also, largest number that can be obtained by starting with 1 and applying the original "Choix de Bruxelles" version 1 operation (as defined in A323286) at most n times.
a(n) is the largest number that can be obtained by applying Choix de Bruxelles (version 2) to all the numbers that can be reached from 1 by applying it n-1 times.
a(n+1) >= A323460(a(n)) (but equality does not always hold). See A307635. - Rémy Sigrist, Jan 15 2019

Examples

			After applying Choix de Bruxelles (version 2) 4 times to 1, we have the numbers {1,2,4,8,16}. Applying it a fifth time we get the additional numbers {13,26,32,112}, so a(5) = 112.
		

Crossrefs

Formula

a(n+4) = decimal concatenation of 8112 and a(n) for n >= 10.

Extensions

a(9)-a(16) from Rémy Sigrist, Jan 15 2019. Further terms from N. J. A. Sloane, May 01 2019