This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323458 #22 May 30 2021 04:45:37 %S A323458 4,1,4,1,5,1,1,0,8,2,9,8,0,0,0,0,5,1,7,0,4,9,5,1,5,7,9,9,7,3,1,4,6,4, %T A323458 7,3,4,6,6,4,1,5,1,3,7,7,5,7,2,0,9,9,9,3,3,2,9,3,4,2,3,9,2,1,0,4,0,4, %U A323458 6,9,2,2,8,5,9,6,6,6,3,9,9,6,8,0,8,9,0,4,0,1,4,6,7,7,6,1,5,7,7,3 %N A323458 Decimal expansion of log(2^(1/2)*3^(1/3) / 6^(1/6)). %H A323458 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A323458 From _Jianing Song_, Jan 23 2019: (Start) %F A323458 Equals (1/6)*log(12) = (1/6)*A016635. %F A323458 Equals (1/3)*log(2) + (1/6)*log(3) = (1/3)*A002162 + (1/6)*A002391. (End) %F A323458 Equals Sum_{k>=1} H(2*k-1)/4^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - _Amiram Eldar_, May 30 2021 %e A323458 0.4141511082980000517049515799731464734664151377572... %t A323458 RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* _Georg Fischer_, Apr 04 2020 *) %o A323458 (PARI) log( 2^(1/2)*3^(1/3) / 6^(1/6) ) \\ _Charles R Greathouse IV_, May 15 2019 %Y A323458 Suggested by A230191. %Y A323458 Cf. A002162, A002391, A016635. %Y A323458 Cf. A001008, A002805. %K A323458 nonn,cons %O A323458 0,1 %A A323458 _N. J. A. Sloane_, Jan 20 2019 %E A323458 a(99) corrected by _Georg Fischer_, Apr 04 2020