A323486 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n*k.
1, 10168, 119700, 196, 1973082, 63980523693, 167037139360, 1350720096, 1543479071, 17239680, 4000206089, 219566358180, 104171259465, 2380649994, 113323907385, 14059155927, 19925280
Offset: 1
Examples
det | 1 | = 1 = 1*1. . | 1 0 1 6 8| | 8 1 0 1 6| det | 6 8 1 0 1| = 20336 = 2*10168. | 1 6 8 1 0| | 0 1 6 8 1|
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
- Wikipedia, Circulant matrix.
Programs
-
Maple
with(linalg): P:=proc(q) local a,b,c,d,i,j,k,n,t; for i from 1 to q do for n from 1 to q do d:=ilog10(n)+1; a:=convert(n,base,10); c:=[]; for k from 1 to nops(a) do c:=[op(c),a[-k]]; od; t:=[op([]),c]; for k from 2 to d do b:=[op([]),c[nops(c)]]; for j from 1 to nops(c)-1 do b:=[op(b),c[j]]; od; c:=b; t:=[op(t),c]; od; if i*n=det(t) then print(n); break; fi; od; od; end: P(10^7);
Extensions
a(6)-a(17) from Giovanni Resta, Jan 21 2019