This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323487 #13 Sep 01 2021 03:39:54 %S A323487 0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,6,0,18,0,24,0,48,42,18,12,48,78, %T A323487 36,66,108,102,240,222,360,330,696,690,858,1086,1692,1920,2604,3156, %U A323487 4284,5370,7308,9270,12036,15756,20688,26562,34500,44274,59058,75576 %N A323487 Number of length-n ternary words that are bi-maximally squarefree. %C A323487 A word is squarefree if it contains no block of the form XX, where X is a nonempty block. A word is bi-maximally squarefree if it cannot be extended on either the left or right to a longer squarefree word. %C A323487 All terms are multiples of 6 due to possible renamings of letters. - _Michael S. Branicky_, Sep 01 2021 %e A323487 For n = 7 the six possibilities are 0102010 and all renamings of the letters. %e A323487 For n = 15 the six possibilities are 010210120102101 and all renamings of the letters. %o A323487 (Python) %o A323487 def isf(w): # incrementally squarefree (check factors ending in last letter) %o A323487 for l in range(1, len(w)//2 + 1): %o A323487 if w[-2*l:-l] == w[-l:]: return False %o A323487 return True %o A323487 def is_bmsf(w, sfsnew): # is w bi-maximally squarefree %o A323487 lefts, rights = [c+w for c in "123"], [w+c for c in "123"] %o A323487 return all(x not in sfsnew for x in lefts + rights) %o A323487 def aupton(nn): %o A323487 alst, sfs = [], set("123") %o A323487 for n in range(1, nn+1): %o A323487 sfsnew = set(w+c for w in sfs for c in "123" if isf(w+c)) %o A323487 an = len([w for w in sfs if is_bmsf(w, sfsnew)]) %o A323487 alst.append(an) %o A323487 sfs = sfsnew %o A323487 return alst %o A323487 print(aupton(30)) # _Michael S. Branicky_, Sep 01 2021 %Y A323487 Cf. A282212, which is the one-sided version of maximally squarefree. %K A323487 nonn %O A323487 1,7 %A A323487 _Jeffrey Shallit_, Jan 16 2019 %E A323487 a(31)-a(58) from _Michael S. Branicky_, Sep 01 2021