This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323508 #6 Jan 17 2019 17:20:17 %S A323508 1,2,4,6,8,12,16,24,12,24,32,48,64,48,24,120,128,36,256,96,48,96,512, %T A323508 240,24,192,48,192,1024,72,2048,720,96,384,48,144,4096,768,192,480, %U A323508 8192,144,16384,384,96,1536,32768,1440,48,72,384,768,65536,144,96,960,768,3072,131072,288,262144,6144,192,5040,192,288,524288,1536,1536 %N A323508 a(n) = A323505(A156552(n)). %C A323508 Sequence contains only terms of A001013 and each a(n) is a multiple of A112624(n). %H A323508 Antti Karttunen, <a href="/A323508/b323508.txt">Table of n, a(n) for n = 1..4096</a> %F A323508 a(n) = A323505(A156552(n)). %o A323508 (PARI) %o A323508 A001511(n) = (1+valuation(n,2)); %o A323508 A036987(n) = !bitand(n,1+n); %o A323508 A323505(n) = if(!n,1,if(!(n%2), 2*A323505(n/2), (A001511(n+1)+1-A036987(n))*A323505((n-1)/2))); %o A323508 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A323508 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A323508 A323508(n) = A323505(A156552(n)); %Y A323508 Cf. A001013, A112624, A156552, A323505. %K A323508 nonn %O A323508 1,2 %A A323508 _Antti Karttunen_, Jan 17 2019