A323524 Number of integer partitions of n whose parts can be arranged into a square matrix with equal row and column sums.
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 5, 1, 4, 4, 6, 1, 10, 1, 7, 10, 6, 1, 24, 2, 7, 22, 18, 1, 38, 1, 35, 43, 9, 6, 124, 1, 10, 77, 158, 1, 110, 1, 285, 186, 12, 1, 742, 2, 170, 203, 1110, 1, 285, 480, 2115, 306, 15, 1
Offset: 0
Examples
The a(12) = 5 integer partitions are (12), (5,5,1,1), (4,4,2,2), (3,3,3,3), (2,2,2,1,1,1,1,1,1). For example, such a matrix for (2,2,2,1,1,1,1,1,1) is: [1 1 2] [2 1 1] [1 2 1]
Crossrefs
Formula
a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019
Extensions
a(16)-a(59) from Chai Wah Wu, Jan 20 2019