A323525 Number of ways to arrange the parts of a multiset whose multiplicities are the prime indices of n into a square matrix.
1, 1, 0, 0, 0, 0, 1, 0, 6, 4, 0, 12, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(9) = 6 matrices: [1 1] [1 2] [1 2] [2 1] [2 1] [2 2] [2 2] [1 2] [2 1] [1 2] [2 1] [1 1] The a(38) = 9 matrices: [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 2] [1 2 1] [2 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 2] [1 2 1] [2 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 2] [1 2 1] [2 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,Reverse[primeMS[n]]]; Table[If[IntegerQ[Sqrt[Total[primeMS[n]]]],Length[Permutations[nrmptn[n]]],0],{n,100}]
Comments