This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323531 #4 Jan 22 2019 07:45:41 %S A323531 1,1,1,1,2,2,4,5,9,12,18,24,36,48,69,97,139,196,283,402,576,819,1161, %T A323531 1635,2301,3209,4469,6193,8571,11812,16291,22404,30850,42414,58393, %U A323531 80305,110578,152091,209308,287686,395352,542413,743603,1017489,1390510,1896482 %N A323531 Number of square multiset partitions of integer partitions of n. %C A323531 A multiset partition is square if the number of parts is equal to the number of parts in each part. %e A323531 The a(3) = 1 through a(9) = 12 square multiset partitions: %e A323531 (3) (4) (5) (6) (7) (8) (9) %e A323531 (11)(11) (21)(11) (21)(21) (22)(21) (22)(22) (32)(22) %e A323531 (22)(11) (31)(21) (31)(22) (32)(31) %e A323531 (31)(11) (32)(11) (31)(31) (33)(21) %e A323531 (41)(11) (32)(21) (41)(22) %e A323531 (33)(11) (41)(31) %e A323531 (41)(21) (42)(21) %e A323531 (42)(11) (43)(11) %e A323531 (51)(11) (51)(21) %e A323531 (52)(11) %e A323531 (61)(11) %e A323531 (111)(111)(111) %t A323531 Table[Sum[Length[Union@@(Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@#]]&/@IntegerPartitions[n,{k}])],{k,Sqrt[n]}],{n,30}] %Y A323531 Cf. A000219, A001970, A047968, A261049, A279787, A305551, A319066, A323580. %K A323531 nonn %O A323531 0,5 %A A323531 _Gus Wiseman_, Jan 21 2019