This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323542 #19 Sep 08 2022 08:46:23 %S A323542 0,1,512,1896129,14101250048,242755875390625,7888809923487203328, %T A323542 452522453429009743939201,42521926771106843499966758912, %U A323542 6212193882217859346149080691430849,1350441156698962215630405632000000000000,421551664651621436548685508587919503984205889 %N A323542 a(n) = Product_{k=0..n} (k^4 + (n-k)^4). %H A323542 Seiichi Manyama, <a href="/A323542/b323542.txt">Table of n, a(n) for n = 0..125</a> %F A323542 a(n) ~ exp((Pi*(sqrt(2) - 1/2) - 4)*n) * n^(4*n + 4). %t A323542 Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}] %o A323542 (Magma) [(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // _Vincenzo Librandi_, Jan 18 2019 %o A323542 (PARI) m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ _G. C. Greubel_, Jan 18 2019 %o A323542 (Sage) m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # _G. C. Greubel_, Jan 18 2019 %Y A323542 Cf. A272247, A323497, A323540, A323541, A323543, A323544, A323545, A323546. %Y A323542 Cf. 2*A000538 and A259108 (with sum instead of product). %K A323542 nonn %O A323542 0,3 %A A323542 _Vaclav Kotesovec_, Jan 17 2019