This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323575 #17 Sep 08 2022 08:46:23 %S A323575 1,1,8,405,229376,1827109375,257063481999360,755170478103207873707, %T A323575 54143353027014803410072371200, %U A323575 107483342384971486221625795626923693445,6647872853044955947850033397760000000000000000000,14166017880429890423491783342799863539312599105433301729629445 %N A323575 a(n) = Product_{k=1..n} (k^k + (n-k)^k). %H A323575 G. C. Greubel, <a href="/A323575/b323575.txt">Table of n, a(n) for n = 0..36</a> %F A323575 a(n) ~ c * n^(n*(n+1)/2) * 2^(n^2/2) / exp(n^2/2), where c = A303641 = 2.473655256632129487637893694272428036362097123254579382787777122619864038942... %t A323575 Table[Product[k^k+(n-k)^k, {k, 1, n}], {n, 0, 12}] %o A323575 (PARI) vector(12, n, n--; prod(k=1,n, k^k+(n-k)^k)) \\ _G. C. Greubel_, Feb 08 2019 %o A323575 (Magma) [1] cat [(&*[k^k +(n-k)^k: k in [1..n]]): n in [1..12]]; // _G. C. Greubel_, Feb 08 2019 %o A323575 (Sage) [product(k^k +(n-k)^k for k in (1..n)) for n in (0..12)] # _G. C. Greubel_, Feb 08 2019 %Y A323575 Cf. A323540-A323546, A323588, A323589, A303641. %K A323575 nonn %O A323575 0,3 %A A323575 _Vaclav Kotesovec_, Jan 18 2019