This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323577 #43 Feb 16 2025 08:33:57 %S A323577 67,419,661,859,947,1123,1277,1453,2069,2267,2333,2531,2707,2861,3037, %T A323577 3323,3499,3851,3917,4093,4357,4621,4973,5171,5501,6029,6469,6491, %U A323577 6733,7019,7283,7349,7459,7547,7789,7877,8053,8669,8867,8933,9901,9923,10099,10253,10891,10979 %N A323577 Primes p such that 2 is a primitive root modulo p while 2048 is not. %C A323577 Primes p such that 2 is a primitive root modulo p (i.e., p is in A001122) and that p == 1 (mod 11). %C A323577 According to Artin's conjecture, the number of terms <= N is roughly ((10/109)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N). %H A323577 Amiram Eldar, <a href="/A323577/b323577.txt">Table of n, a(n) for n = 1..10000</a> %H A323577 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArtinsConstant.html">Artin's constant</a>. %H A323577 Wikipedia, <a href="https://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots">Artin's conjecture on primitive roots</a>. %o A323577 (PARI) forprime(p=3, 12000, if(znorder(Mod(2, p))==(p-1) && p%11==1, print1(p, ", "))) %Y A323577 Cf. A001122, A005596, A000720. %Y A323577 Primes p such that 2 is a primitive root modulo p and that p == 1 (mod q): A307627 (q=3), A307628 (q=5), A323576 (q=7), this sequence (q=11), A323590 (q=13). %K A323577 nonn %O A323577 1,1 %A A323577 _Jianing Song_, Aug 30 2019