A323581 Number of ways to fill a Young diagram with positive integers summing to n such that the rows are strictly increasing and the columns are strictly decreasing.
1, 1, 1, 3, 3, 5, 8, 10, 14, 19, 28, 34, 48, 60, 80, 106, 134, 171, 222, 279, 354, 452, 562, 706, 884, 1100
Offset: 0
Examples
The a(8) = 14 tableaux: 8 1 7 2 6 3 5 1 2 5 1 3 4 . 7 6 5 2 5 3 4 2 3 1 2 3 1 1 1 2 . 5 4 2 3 1 1
Links
- nLab, Young Diagram.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Sum[Length[Select[Reverse/@Sort/@Map[primeMS,sqfacs[y],{2}],And@@Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}]&]],{y,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]