cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323584 Second Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic.

Original entry on oeis.org

1, 1, 1, 4, 8, 22, 34, 84, 137, 271, 450, 857, 1373, 2483, 3993, 6823, 10990, 18332, 28966, 47328, 74286, 118614, 184755, 290781, 448010, 695986, 1063773, 1632100, 2474970, 3759610, 5654233, 8512307, 12710995, 18973247, 28139285, 41690830, 61423271, 90379782
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2019

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.
Also the number of plane partitions of n whose multiset of rows is aperiodic and whose parts are relatively prime.

Examples

			The a(4) = 8 plane partitions with aperiodic multisets of rows and columns:
  4   31   211
.
  3   21   111
  1   1    1
.
  2   11
  1   1
  1   1
The a(4) = 8 plane partitions with aperiodic multiset of rows and relatively prime parts:
  31   211   1111
.
  3   21   111
  1   1    1
.
  2   11
  1   1
  1   1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[GCD@@Length/@Split[#]==1,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],GCD@@#==1&]}],{n,10}]

Formula

The Moebius transform T of a sequence q is T(q)(n) = Sum_{d|n} mu(n/d) * q(d) where mu = A008683. The first Moebius transform of A000219 is A300275 and the third is A323585.