A323584 Second Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic.
1, 1, 1, 4, 8, 22, 34, 84, 137, 271, 450, 857, 1373, 2483, 3993, 6823, 10990, 18332, 28966, 47328, 74286, 118614, 184755, 290781, 448010, 695986, 1063773, 1632100, 2474970, 3759610, 5654233, 8512307, 12710995, 18973247, 28139285, 41690830, 61423271, 90379782
Offset: 0
Keywords
Examples
The a(4) = 8 plane partitions with aperiodic multisets of rows and columns: 4 31 211 . 3 21 111 1 1 1 . 2 11 1 1 1 1 The a(4) = 8 plane partitions with aperiodic multiset of rows and relatively prime parts: 31 211 1111 . 3 21 111 1 1 1 . 2 11 1 1 1 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[GCD@@Length/@Split[#]==1,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],GCD@@#==1&]}],{n,10}]
Comments