A323585 Third Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic and whose parts are relatively prime.
1, 1, 0, 3, 7, 21, 30, 83, 129, 267, 428, 856, 1332, 2482, 3909, 6798, 10853, 18331, 28665, 47327, 73829, 118527, 183898, 290780, 446508, 695964, 1061290, 1631829, 2470970, 3759609, 5646952, 8512306, 12700005, 18972387, 28120953, 41690725, 61392966, 90379781
Offset: 0
Keywords
Examples
The a(4) = 7 plane partitions with aperiodic multisets of rows and columns and relatively prime parts: 31 211 . 3 21 111 1 1 1 . 2 11 1 1 1 1 The same for a(5) = 21: 41 32 311 221 2111 . 4 3 31 21 22 21 211 111 1111 1 2 1 2 1 11 1 11 1 . 3 2 21 11 111 1 2 1 11 1 1 1 1 1 1 . 2 11 1 1 1 1 1 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[GCD@@Length/@Split[#]==1,GCD@@Length/@Split[Transpose[PadRight[#]]]==1,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,Select[IntegerPartitions[n],GCD@@#==1&]}],{n,10}]
Comments