This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323588 #13 Sep 08 2022 08:46:23 %S A323588 1,1,8,2187,55083008,248292236328125,287440081598682287308800, %T A323588 136294854579772162759923622710449623, %U A323588 32534104705262209051040075603284216686012438413312,5686543339012978225006873713961872387810223003912610672810622880089 %N A323588 a(n) = Product_{k=1..n} (k^n + (n-k)^n). %H A323588 G. C. Greubel, <a href="/A323588/b323588.txt">Table of n, a(n) for n = 0..27</a> %F A323588 a(n) ~ c * 2^(n^2) * n^(n^2) / exp(n^2), where %F A323588 c = 1.7567468186007109703792640049745420817202851050652253469714... if n is even, %F A323588 c = 1.8080216158688347442204158454365469233524049331246880759722... if n is odd. %t A323588 Table[Product[k^n+(n-k)^n, {k, 1, n}], {n, 0, 10}] %o A323588 (PARI) vector(10, n, n--; prod(k=1,n, k^n+(n-k)^n)) \\ _G. C. Greubel_, Feb 08 2019 %o A323588 (Magma) [1] cat [(&*[k^n +(n-k)^n: k in [1..n]]): n in [1..10]]; // _G. C. Greubel_, Feb 08 2019 %o A323588 (Sage) [product(k^n +(n-k)^n for k in (1..n)) for n in (0..10)] # _G. C. Greubel_, Feb 08 2019 %Y A323588 Cf. A323540-A323546, A323575, A323589, A323751. %K A323588 nonn %O A323588 0,3 %A A323588 _Vaclav Kotesovec_, Jan 18 2019