A323594 Primes p such that 3 is a primitive root modulo p while 27 is not.
7, 19, 31, 43, 79, 127, 139, 163, 199, 211, 223, 283, 331, 379, 463, 487, 571, 607, 631, 691, 739, 751, 811, 823, 859, 907, 1039, 1063, 1087, 1123, 1231, 1279, 1291, 1327, 1423, 1447, 1459, 1483, 1567, 1579, 1627, 1663, 1699, 1723, 1747, 1831, 1951, 1987, 1999
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant.
- Wikipedia, Artin's conjecture on primitive roots.
Crossrefs
Programs
-
PARI
forprime(p=5, 2000, if(znorder(Mod(3, p))==(p-1) && p%3==1, print1(p, ", ")))
Comments