This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323611 #33 Jan 22 2019 04:51:38 %S A323611 2,3,5,11,37,223,3331,192271,84308429,774116799347,681098209317971743, %T A323611 562101323304225290104514179, %U A323611 13326678220145859782825116625722145759009,1538448162271607869601834587431948506238982765193425993274489 %N A323611 Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^(3/2) for n >= 2 starting with c(1) = C and C the real constant given below. %C A323611 C = 2.038239154782068767463490862609548251448624778443173613879675732. %H A323611 Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019. %e A323611 c(1) = 2.038239154782068, c(2) = 2.9099311279, c(3) = 4.96391190457, c(4) = 11.05951540, ... so a(1) = {c(1)} = 2, a(2) = {c(2)} = 3, a(3) = {c(3)} = 5, ... %e A323611 c(n) = c(n-1)^(3/2) and a(n) = {c(n)} is the value rounded to the nearest integer. %p A323611 # Computes the values according to the formula, c = 2.03823915478..., e = 3/2, m the number of terms. Returns the real and the rounded values (primes). %p A323611 val := proc(c, e, m) %p A323611 local ll, v, n; %p A323611 v := c; %p A323611 ll := [v]; %p A323611 for n to m-1 do %p A323611 v := v^e; ll := [op(ll), v] %p A323611 end do; %p A323611 return [ll, map(round, ll)] %p A323611 end: %Y A323611 Cf. A323176, A323065. %K A323611 nonn %O A323611 1,1 %A A323611 _Simon Plouffe_, Jan 20 2019