A323615 a(0) = 1; for n > 0, a(n) = floor(a(n-1)/n) if positive and not already in the sequence, otherwise a(n) = a(n-1)*n.
1, 1, 2, 6, 24, 4, 24, 3, 24, 216, 21, 231, 19, 247, 17, 255, 15, 255, 14, 266, 13, 273, 12, 276, 11, 275, 10, 270, 9, 261, 8, 248, 7, 231, 7854, 224, 8064, 217, 5, 195, 7800, 190, 7980, 185, 8140, 180, 8280, 176, 8448, 172, 8600, 168, 8736, 164
Offset: 0
Examples
a(5) = 4, since floor(24/5) = 4, which is positive and not already in the sequence. a(6) = 24, since floor(4/6) = 0, hence not positive.
Links
- Jan Koornstra, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Nest[Append[#1, If[And[#3 > 0, FreeQ[#1, #3]], #3, #2 #1[[-1]] ]] & @@ {#1, #2, Floor[#1[[-1]]/#2]} & @@ {#, Length@ #} &, {1}, 53] (* Michael De Vlieger, Jan 23 2019 *)
-
Python
def a323615(n): seq = [] for i in range(n + 1): if i == 0: x = 1 else: x = seq[i - 1] // i if x in seq or x == 0: x = seq[i - 1] * i seq.append(x) return seq print(a323615(100))
Comments