A323616 a(n) is the largest prime factor of phi(2^n-1), where phi is Euler's totient.
1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 257, 3, 73, 5, 7, 31, 97, 5, 5, 13, 19, 7, 29, 11, 331, 2, 293, 257, 439, 3, 1039, 73, 389, 257, 8501, 43, 2713, 31, 37, 683, 569, 7, 5419, 5, 257, 31, 131, 19, 29, 241, 10639, 2179, 8060489, 11, 1321, 331, 1289, 17449
Offset: 1
Keywords
Examples
In the following list, a number k such that gpf(phi(2^k-1)) = gpf(k) is denoted with a "*". a(n) = 1: 1* (1) a(n) = 2: 2*, 4*, 8*, 16*, 32* (5) a(n) = 3: 3*, 6*, 9*, 12*, 18*, 36* (6) a(n) = 5: 5*, 10*, 15*, 20*, 24, 25*, 50* (7) a(n) = 7: 7*, 14*, 21*, 28*, 48 (5) a(n) = 11: 11*, 30, 60 (3) a(n) = 13: 13*, 26* (2) a(n) = 17: (0) a(n) = 19: 27, 54, 108 (3) a(n) = 23: (0) a(n) = 29: 29*, 55 (2) a(n) = 31: 22, 44, 52 (3)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..512 (terms 1..250 from Jianing Song)
Programs
-
Mathematica
a[n_] := FactorInteger[EulerPhi[2^n-1]][[-1, 1]]; Array[a, 64] (* Amiram Eldar, Mar 02 2025 *)
-
PARI
gpf(n) = if(n>1, vecmax(factor(n)[, 1]), 1); a(n) = gpf(eulerphi(2^n-1))
Comments