A323617 Primes p such that 3 is a primitive root modulo p while 243 is not.
31, 101, 211, 281, 331, 401, 461, 521, 571, 631, 641, 691, 701, 751, 811, 821, 881, 941, 1061, 1231, 1291, 1301, 1361, 1481, 1601, 1721, 1831, 1901, 1951, 2011, 2081, 2141, 2311, 2371, 2381, 2731, 2741, 2801, 2861, 3041, 3271, 3331, 3391, 3461, 3571, 3581, 3701, 3761, 3821, 3931
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant.
- Wikipedia, Artin's conjecture on primitive roots.
Crossrefs
Programs
-
PARI
forprime(p=5, 4000, if(znorder(Mod(3, p))==(p-1) && p%5==1, print1(p, ", ")))
Comments