This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323620 #14 Sep 08 2022 08:46:23 %S A323620 0,1,0,1,-4,19,-108,719,-5496,47465,-457160,4858865,-56490060, %T A323620 713165035,-9715762980,142069257055,-2219386098160,36889108220305, %U A323620 -650018185589520,12103669982341025,-237476572759473300,4896758300881695875,-105866710959427454300,2394660132226522508975 %N A323620 Expansion of e.g.f. 2*sqrt(1 + x)*sinh(sqrt(5)*log(1 + x)/2)/sqrt(5). %H A323620 G. C. Greubel, <a href="/A323620/b323620.txt">Table of n, a(n) for n = 0..449</a> %F A323620 a(n) = Sum_{k=0..n} Stirling1(n,k)*A000045(k). %F A323620 From _Vaclav Kotesovec_, Jan 21 2019: (Start) %F A323620 a(n) = -(-1)^n * cos(sqrt(5)*Pi/2) * (Gamma((3 + sqrt(5))/2) * Gamma(n - (1 + sqrt(5))/2) - Gamma((3 - sqrt(5))/2) * Gamma(n + (sqrt(5) - 1)/2)) / (Pi*sqrt(5)). %F A323620 a(n) ~ -(-1)^n * n! / (sqrt(5) * Gamma((sqrt(5)-1)/2) * n^((3 - sqrt(5))/2)). %F A323620 a(n) = -2*(n-2)*a(n-1) - (n^2 - 5*n + 5)*a(n-2). (End) %t A323620 FullSimplify[nmax = 23; CoefficientList[Series[2 Sqrt[1 + x] Sinh[Sqrt[5] Log[1 + x]/2]/Sqrt[5], {x, 0, nmax}], x] Range[0, nmax]!] %t A323620 Table[Sum[StirlingS1[n, k] Fibonacci[k], {k, 0, n}], {n, 0, 23}] %o A323620 (PARI) {a(n) = sum(k=0,n, stirling(n,k,1)*fibonacci(k))}; %o A323620 vector(25, n, n--; a(n)) \\ _G. C. Greubel_, Feb 07 2019 %o A323620 (Magma) [(&+[StirlingFirst(n,k)*Fibonacci(k): k in [0..n]]): n in [0..25]]; // _G. C. Greubel_, Feb 07 2019 %o A323620 (Sage) [sum((-1)^(k+n)*stirling_number1(n,k)*fibonacci(k) for k in (0..n)) for n in (0..25)] # _G. C. Greubel_, Feb 07 2019 %Y A323620 Cf. A000045, A048994, A178840, A213593, A263576, A265165. %K A323620 sign %O A323620 0,5 %A A323620 _Ilya Gutkovskiy_, Jan 20 2019