This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323621 #12 Feb 15 2019 08:21:38 %S A323621 0,1,1,3,2,3,6,4,4,6,9,7,5,7,9,13,10,8,8,10,13,18,14,11,10,11,14,18, %T A323621 23,19,15,12,12,15,19,23,29,24,20,17,16,17,20,24,29,35,30,25,21,20,20, %U A323621 21,25,30,35,42,36,31,26,24,22,24,26,31,36,42,48,43,37,33,28,27,27,28,33,37,43,48,57,49,44,39,34,33,32,33,34,39,44,49,57 %N A323621 The order of square grid cells touched by a circle expanding from the middle of a cell read by antidiagonals. %C A323621 Related to, but not the same as the case with the circle centered at the corner of a cell, see A232499. %H A323621 Rok Cestnik, <a href="/A323621/a323621_1.gif">Visualization</a> %o A323621 (Python) %o A323621 N = 8 %o A323621 from math import sqrt %o A323621 # the distance to the edge of each cell %o A323621 edges = [[-1 for j in range(N)] for i in range(N)] %o A323621 edges[0][0] = 0 %o A323621 for i in range(1,N): %o A323621 edges[i][0] = i-0.5 %o A323621 edges[0][i] = i-0.5 %o A323621 for i in range(1,N): %o A323621 for j in range(1,N): %o A323621 edges[i][j] = sqrt((i-0.5)**2+(j-0.5)**2) %o A323621 # the values of the distances %o A323621 values = [] %o A323621 for i in range(N): %o A323621 for j in range(N): %o A323621 values.append(edges[i][j]) %o A323621 values = list(set(values)) %o A323621 values.sort() %o A323621 # the cell order %o A323621 board = [[-1 for j in range(N)] for i in range(N)] %o A323621 count = 0 %o A323621 for v in values: %o A323621 for i in range(N): %o A323621 for j in range(N): %o A323621 if(edges[i][j] == v): %o A323621 board[i][j] = count %o A323621 count += 1 %o A323621 # print out the sequence %o A323621 for i in range(N): %o A323621 for j in range(i+1): %o A323621 print(str(board[j][i-j])+" ", end="") %Y A323621 For the first row of the grid see A323622. %Y A323621 For the second row of the grid see A323623. %Y A323621 For the diagonal of the grid see A323624. %Y A323621 For the (2,1) diagonal of the grid see A323625. %Y A323621 Cf. A232499. %K A323621 nonn %O A323621 0,4 %A A323621 _Rok Cestnik_, Jan 20 2019