This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323622 #13 Feb 15 2019 14:58:52 %S A323622 0,1,3,6,9,13,18,23,29,35,42,48,57,65,74,84,94,104,115,127,138,151, %T A323622 163,177,192,205,221,235,250,267,284,301,317,337,356,376,394,415,436, %U A323622 456,477,500,521,546,568,590,616,640,666,690,716,745,770,798,826,855,884,913,942,973,1003,1033,1066 %N A323622 The first row of the order of square grid cells touched by a circle expanding from the middle of a cell. %C A323622 Related to, but not the same as the case with the circle centered at the corner of a cell, see A232499. %H A323622 Rok Cestnik, <a href="/A323621/a323621_1.gif">Visualization</a> %o A323622 (Python) %o A323622 N = 12 %o A323622 from math import sqrt %o A323622 # the distance to the edge of each cell %o A323622 edges = [[-1 for j in range(N)] for i in range(N)] %o A323622 edges[0][0] = 0 %o A323622 for i in range(1,N): %o A323622 edges[i][0] = i-0.5 %o A323622 edges[0][i] = i-0.5 %o A323622 for i in range(1,N): %o A323622 for j in range(1,N): %o A323622 edges[i][j] = sqrt((i-0.5)**2+(j-0.5)**2) %o A323622 # the values of the distances %o A323622 values = [] %o A323622 for i in range(N): %o A323622 for j in range(N): %o A323622 values.append(edges[i][j]) %o A323622 values = list(set(values)) %o A323622 values.sort() %o A323622 # the cell order %o A323622 board = [[-1 for j in range(N)] for i in range(N)] %o A323622 count = 0 %o A323622 for v in values: %o A323622 for i in range(N): %o A323622 for j in range(N): %o A323622 if(edges[i][j] == v): %o A323622 board[i][j] = count %o A323622 count += 1 %o A323622 # print out the sequence %o A323622 for i in range(N): %o A323622 print(str(board[i][0])+" ", end="") %Y A323622 For the grid read by antidiagonals see A323621. %Y A323622 For the second row of the grid see A323623. %Y A323622 For the diagonal of the grid see A323624. %Y A323622 For the (2,1) diagonal of the grid see A323625. %Y A323622 Cf. A232499. %K A323622 nonn %O A323622 0,3 %A A323622 _Rok Cestnik_, Jan 20 2019