This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323623 #11 Feb 15 2019 14:58:35 %S A323623 1,2,4,7,10,14,19,24,30,36,43,49,58,66,75,85,95,105,116,128,139,152, %T A323623 164,178,193,206,222,236,251,268,285,302,318,338,357,377,395,416,437, %U A323623 457,478,501,522,547,569,591,617,641,667,691,717,746,771,799,827,856,885,914,943,974,1004,1034,1067 %N A323623 The second row of the order of square grid cells touched by a circle expanding from the middle of a cell. %C A323623 Related to, but not the same as the case with the circle centered at the corner of a cell, see A232499. %H A323623 Rok Cestnik, <a href="/A323621/a323621_1.gif">Visualization</a> %o A323623 (Python) %o A323623 N = 12 %o A323623 from math import sqrt %o A323623 # the distance to the edge of each cell %o A323623 edges = [[-1 for j in range(N)] for i in range(N)] %o A323623 edges[0][0] = 0 %o A323623 for i in range(1,N): %o A323623 edges[i][0] = i-0.5 %o A323623 edges[0][i] = i-0.5 %o A323623 for i in range(1,N): %o A323623 for j in range(1,N): %o A323623 edges[i][j] = sqrt((i-0.5)**2+(j-0.5)**2) %o A323623 # the values of the distances %o A323623 values = [] %o A323623 for i in range(N): %o A323623 for j in range(N): %o A323623 values.append(edges[i][j]) %o A323623 values = list(set(values)) %o A323623 values.sort() %o A323623 # the cell order %o A323623 board = [[-1 for j in range(N)] for i in range(N)] %o A323623 count = 0 %o A323623 for v in values: %o A323623 for i in range(N): %o A323623 for j in range(N): %o A323623 if(edges[i][j] == v): %o A323623 board[i][j] = count %o A323623 count += 1 %o A323623 # print out the sequence %o A323623 for i in range(N): %o A323623 print(str(board[i][1])+" ", end="") %Y A323623 For the grid read by antidiagonals see A323621. %Y A323623 For the first row of the grid see A323622. %Y A323623 For the diagonal of the grid see A323624. %Y A323623 For the (2,1) diagonal of the grid see A323625. %Y A323623 Cf. A232499. %K A323623 nonn %O A323623 0,2 %A A323623 _Rok Cestnik_, Jan 20 2019