This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323624 #12 Feb 15 2019 14:58:06 %S A323624 0,2,5,10,16,22,32,40,50,62,73,88,101,118,134,152,170,189,210,230,253, %T A323624 275,299,325,351,381,406,435,465,495,527,561,593,628,663,699,737,775, %U A323624 813,853,895,935,981,1021,1068,1113,1156,1205,1253,1302,1352,1401,1454,1502,1557,1609,1664,1723 %N A323624 The diagonal of the order of square grid cells touched by a circle expanding from the middle of a cell. %C A323624 Related to, but not the same as the case with the circle centered at the corner of a cell, see A232499. %H A323624 Rok Cestnik, <a href="/A323621/a323621_1.gif">Visualization</a> %o A323624 (Python) %o A323624 N = 12 %o A323624 from math import sqrt %o A323624 # the distance to the edge of each cell %o A323624 edges = [[-1 for j in range(N)] for i in range(N)] %o A323624 edges[0][0] = 0 %o A323624 for i in range(1,N): %o A323624 edges[i][0] = i-0.5 %o A323624 edges[0][i] = i-0.5 %o A323624 for i in range(1,N): %o A323624 for j in range(1,N): %o A323624 edges[i][j] = sqrt((i-0.5)**2+(j-0.5)**2) %o A323624 # the values of the distances %o A323624 values = [] %o A323624 for i in range(N): %o A323624 for j in range(N): %o A323624 values.append(edges[i][j]) %o A323624 values = list(set(values)) %o A323624 values.sort() %o A323624 # the cell order %o A323624 board = [[-1 for j in range(N)] for i in range(N)] %o A323624 count = 0 %o A323624 for v in values: %o A323624 for i in range(N): %o A323624 for j in range(N): %o A323624 if(edges[i][j] == v): %o A323624 board[i][j] = count %o A323624 count += 1 %o A323624 # print out the sequence %o A323624 for i in range(N): %o A323624 print(str(board[i][i])+",", end="") %Y A323624 For the grid read by antidiagonals see A323621. %Y A323624 For the first row of the grid see A323622. %Y A323624 For the second row of the grid see A323623. %Y A323624 For the (2,1) diagonal of the grid see A323625. %Y A323624 Cf. A232499. %K A323624 nonn %O A323624 0,2 %A A323624 _Rok Cestnik_, Jan 20 2019