This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323625 #11 Feb 15 2019 14:58:44 %S A323625 0,4,11,21,34,49,68,90,112,137,167,198,230,265,305,345,388,432,480, %T A323625 529,583,635,692,752,812,876,941,1010,1079,1151,1225,1305,1383,1462, %U A323625 1545,1630,1720,1811,1901,1995,2092,2190,2287,2391,2499,2606,2715,2827,2941,3056,3174,3295,3421,3541,3668,3792,3923,4058,4193,4333,4466,4609,4754,4899,5042,5194,5344,5498,5654,5813,5972,6133 %N A323625 The (2,1) diagonal of the order of square grid cells touched by a circle expanding from the middle of a cell. %C A323625 Related to, but not the same as the case with the circle centered at the corner of a cell, see A232499. %H A323625 Rok Cestnik, <a href="/A323621/a323621_1.gif">Visualization</a> %o A323625 (Python) %o A323625 N = 24 %o A323625 from math import sqrt %o A323625 # the distance to the edge of each cell %o A323625 edges = [[-1 for j in range(N)] for i in range(N)] %o A323625 edges[0][0] = 0 %o A323625 for i in range(1,N): %o A323625 edges[i][0] = i-0.5 %o A323625 edges[0][i] = i-0.5 %o A323625 for i in range(1,N): %o A323625 for j in range(1,N): %o A323625 edges[i][j] = sqrt((i-0.5)**2+(j-0.5)**2) %o A323625 # the values of the distances %o A323625 values = [] %o A323625 for i in range(N): %o A323625 for j in range(N): %o A323625 values.append(edges[i][j]) %o A323625 values = list(set(values)) %o A323625 values.sort() %o A323625 # the cell order %o A323625 board = [[-1 for j in range(N)] for i in range(N)] %o A323625 count = 0 %o A323625 for v in values: %o A323625 for i in range(N): %o A323625 for j in range(N): %o A323625 if(edges[i][j] == v): %o A323625 board[i][j] = count %o A323625 count += 1 %o A323625 # print out the sequence %o A323625 for i in range(int(round(N/2))): %o A323625 print(str(board[2*i][i])+" ", end="") %Y A323625 For the grid read by antidiagonals see A323621. %Y A323625 For the first row of the grid see A323622. %Y A323625 For the second row of the grid see A323623. %Y A323625 For the (1,1) diagonal of the grid see A323624. %Y A323625 Cf. A232499. %K A323625 nonn %O A323625 0,2 %A A323625 _Rok Cestnik_, Jan 20 2019