cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323626 For any nonnegative real number x, let f(x) be the real number obtained by replacing in the binary expansions of the integer and fractional parts of x each finite run of k consecutive equal bits b with a run of k-(-1)^k consecutive bits b; a(n) is the numerator of f(1/n).

This page as a plain text file.
%I A323626 #15 Feb 27 2020 23:21:28
%S A323626 3,3,1,3,1,2,3,3,1,1,13,1,7,3,1,3,1,2,77,1,1,26,203,1,817,14,109,3,
%T A323626 1037,2,3,3,1,1,1297,1,20275,77,155,1,17,1,13,13,67,203,6716227,1,
%U A323626 421735,817,17,7,2306997,109,55739,3,49,1037,818712813,1,138203853,3
%N A323626 For any nonnegative real number x, let f(x) be the real number obtained by replacing in the binary expansions of the integer and fractional parts of x each finite run of k consecutive equal bits b with a run of k-(-1)^k consecutive bits b; a(n) is the numerator of f(1/n).
%C A323626 When computing f(x), we consider the unique binary representation of x where the fractional part of x does not eventually end with repeating ones.
%C A323626 The function f establishes a self-inverse bijection:
%C A323626 - over the nonnegative real numbers,
%C A323626 - over the nonnegative real numbers in the half-open interval [0,1),
%C A323626 - over the nonnegative rational numbers,
%C A323626 - over the nonnegative rational numbers in the half-open interval [0,1),
%C A323626 - over the nonnegative integers (for any n >= 0, f(n) = A162853(n)).
%C A323626 The function f has only one fixed point: f(0) = 0.
%H A323626 Rémy Sigrist, <a href="/A323626/a323626.png">Representation of f in the half-open interval [0,1)</a>
%H A323626 Rémy Sigrist, <a href="/A323626/a323626_1.gp.txt">PARI program for A323626</a>
%F A323626 a(2^k) = 3 for any k >= 0.
%F A323626 a(2^k-1) = 2-(-1)^k for any k > 0.
%e A323626 The first terms of the sequence, alongside f(1/n) and the binary representations of 1/n and of f(1/n) with periodic part in parentheses, are:
%e A323626   n   a(n)  f(1/n)   bin(1/n)                bin(f(1/n))
%e A323626   --  ----  -------  ----------------------  ------------------------
%e A323626    1     3        3  1.(0)                   11.(0)
%e A323626    2     3      3/4  0.1(0)                   0.11(0)
%e A323626    3     1      1/5  0.(01)                   0.(0011)
%e A323626    4     3     3/16  0.01(0)                  0.0011(0)
%e A323626    5     1      1/3  0.(0011)                 0.(01)
%e A323626    6     2      2/5  0.0(01)                  0.(0110)
%e A323626    7     3      3/7  0.(001)                  0.(011)
%e A323626    8     3      3/8  0.001(0)                 0.011(0)
%e A323626    9     1     1/17  0.(000111)               0.(00001111)
%e A323626   10     1     1/24  0.0(0011)                0.000(01)
%e A323626   11    13   13/257  0.(0001011101)           0.(0000110011110011)
%e A323626   12     1     1/20  0.00(01)                 0.00(0011)
%e A323626   13     7    7/129  0.(000100111011)         0.(00001101111001)
%e A323626   14     3     3/56  0.0(001)                 0.000(011)
%e A323626   15     1     1/21  0.(0001)                 0.(000011)
%e A323626   16     3     3/64  0.0001(0)                0.000011(0)
%e A323626   17     1      1/9  0.(00001111)             0.(000111)
%e A323626   18     2     2/17  0.0(000111)              0.(00011110)
%e A323626   19    77  77/1025  0.(000011010111100101)   0.(00010011001110110011)
%e A323626   20     1     1/12  0.00(0011)               0.00(01)
%o A323626 (PARI) See Links section.
%Y A323626 See A323627 for the corresponding denominators.
%Y A323626 Cf. A162853.
%K A323626 nonn,frac,base
%O A323626 1,1
%A A323626 _Rémy Sigrist_, Jan 20 2019