A323628 Primes p such that 3 is a primitive root modulo p while 2187 is not.
29, 43, 113, 127, 197, 211, 281, 379, 449, 463, 617, 631, 701, 953, 1373, 1709, 1723, 2129, 2143, 2213, 2311, 2381, 2549, 2633, 2647, 2731, 2801, 2969, 3137, 3389, 3557, 3571, 3823, 4159, 4229, 4243, 4327, 4397, 4481, 4649, 4663, 4817, 4831, 4999, 5237, 5419
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Artin's constant
- Wikipedia, Artin's conjecture on primitive roots
Crossrefs
Programs
-
Maple
select(p -> isprime(p) and numtheory:-order(3,p)=p-1, [seq(i,i=1..10000,7)]); # Robert Israel, Sep 01 2019
-
PARI
forprime(p=5, 5500, if(znorder(Mod(3, p))==(p-1) && p%7==1, print1(p, ", ")))
Comments