This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323654 #8 Aug 26 2019 21:05:48 %S A323654 1,0,1,1,3,3,8,9,20,26,50,69,125,177,301,440,717,1055,1675,2471,3835, %T A323654 5660,8627,12697,19095,27978,41581,60650,89244,129490,188925,272676, %U A323654 394809,566882,815191,1164510,1664295,2365698,3361844,4756030,6723280,9468138,13319299 %N A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices. %C A323654 First differs from A304967 at a(10) = 50, A304967(10) = 49. %C A323654 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A323654 Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations. %H A323654 Andrew Howroyd, <a href="/A323654/b323654.txt">Table of n, a(n) for n = 0..1000</a> %F A323654 a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - _Andrew Howroyd_, Aug 26 2019 %e A323654 Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions: %e A323654 {{12}} {{122}} {{1122}} {{11222}} {{111222}} {{1112222}} %e A323654 {{1222}} {{12222}} {{112222}} {{1122222}} %e A323654 {{12}{12}} {{12}{122}} {{122222}} {{1222222}} %e A323654 {{112}{122}} {{112}{1222}} %e A323654 {{12}{1122}} {{12}{11222}} %e A323654 {{12}{1222}} {{12}{12222}} %e A323654 {{122}{122}} {{122}{1122}} %e A323654 {{12}{12}{12}} {{122}{1222}} %e A323654 {{12}{12}{122}} %e A323654 Inequivalent representatives of the a(8) = 20 matrices: %e A323654 [4 4] [3 5] [2 6] [1 7] %e A323654 . %e A323654 [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3] %e A323654 [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3] %e A323654 . %e A323654 [1 1] [1 1] [1 1] [1 1] %e A323654 [1 1] [1 1] [2 1] [1 2] %e A323654 [2 2] [1 3] [1 2] [1 2] %e A323654 . %e A323654 [1 1] %e A323654 [1 1] %e A323654 [1 1] %e A323654 [1 1] %o A323654 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A323654 seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ _Andrew Howroyd_, Aug 26 2019 %Y A323654 Cf. A003293, A007716, A052847, A054974, A120733, A321407, A321760, A323655, A323656. %K A323654 nonn %O A323654 0,5 %A A323654 _Gus Wiseman_, Jan 22 2019 %E A323654 Terms a(11) and beyond from _Andrew Howroyd_, Aug 26 2019