This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323656 #8 Aug 26 2019 21:44:48 %S A323656 0,0,2,4,14,28,69,134,285,536,1050,1918,3566,6346,11363,19771,34405, %T A323656 58677,99797,167223,279032,460264,755560,1228849,1988680,3193513, %U A323656 5103104,8100712,12798207,20102883,31434374,48900337,75746745,116787611,179342230,274238159 %N A323656 Number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices, or with exactly 2 (not necessarily distinct) edges. %C A323656 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A323656 Also the number of nonnegative integer matrices with only two columns, no zero rows or columns, and sum of entries equal to n, up to row and column permutations. %H A323656 Andrew Howroyd, <a href="/A323656/b323656.txt">Table of n, a(n) for n = 0..1000</a> %F A323656 a(n) = A323655(n) - A000041(n). - _Andrew Howroyd_, Aug 26 2019 %e A323656 Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 distinct vertices: %e A323656 {{12}} {{122}} {{1122}} %e A323656 {{1}{2}} {{1}{22}} {{1222}} %e A323656 {{2}{12}} {{1}{122}} %e A323656 {{1}{2}{2}} {{11}{22}} %e A323656 {{12}{12}} %e A323656 {{1}{222}} %e A323656 {{12}{22}} %e A323656 {{2}{122}} %e A323656 {{1}{1}{22}} %e A323656 {{1}{2}{12}} %e A323656 {{1}{2}{22}} %e A323656 {{2}{2}{12}} %e A323656 {{1}{1}{2}{2}} %e A323656 {{1}{2}{2}{2}} %e A323656 Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 edges: %e A323656 {{1}{1}} {{1}{11}} {{1}{111}} %e A323656 {{1}{2}} {{1}{22}} {{11}{11}} %e A323656 {{1}{23}} {{1}{122}} %e A323656 {{2}{12}} {{11}{22}} %e A323656 {{12}{12}} %e A323656 {{1}{222}} %e A323656 {{12}{22}} %e A323656 {{1}{233}} %e A323656 {{12}{33}} %e A323656 {{1}{234}} %e A323656 {{12}{34}} %e A323656 {{13}{23}} %e A323656 {{2}{122}} %e A323656 {{3}{123}} %e A323656 Inequivalent representatives of the a(4) = 14 matrices: %e A323656 [2 2] [1 3] %e A323656 . %e A323656 [1 0] [1 0] [0 1] [2 0] [1 1] [1 1] %e A323656 [1 2] [0 3] [1 2] [0 2] [1 1] [0 2] %e A323656 . %e A323656 [1 0] [1 0] [1 0] [0 1] %e A323656 [1 0] [0 1] [0 1] [0 1] %e A323656 [0 2] [1 1] [0 2] [1 1] %e A323656 . %e A323656 [1 0] [1 0] %e A323656 [1 0] [0 1] %e A323656 [0 1] [0 1] %e A323656 [0 1] [0 1] %o A323656 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A323656 seq(n)={concat(0, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2 - EulerT(vector(n,k,1)))} \\ _Andrew Howroyd_, Aug 26 2019 %Y A323656 Cf. A000041, A007716, A052847, A054974, A120733, A316980, A323654, A323655, A323656. %K A323656 nonn %O A323656 0,3 %A A323656 _Gus Wiseman_, Jan 22 2019 %E A323656 Terms a(11) and beyond from _Andrew Howroyd_, Aug 26 2019