This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323658 #15 Jul 23 2019 08:53:38 %S A323658 1,1,1,2,7,25,133,854 %N A323658 Number of bipartite graphs associated with connected transitive oriented graphs. %C A323658 Also the number of unlabeled connected Cohen-Macaulay bipartite graphs up to graph isomorphism. %C A323658 If G is an oriented graph with vertex set {1,...,n}, then the associated bipartite graph is a bipartite graph B(G) with parts {a1,...,an} and {b1,...,bn} such that ai ~ bj if (i,j) is an edge in G. %H A323658 M. Estrada and R. H. Villarreal, <a href="https://doi.org/10.1007/s000130050040">Cohen-Macaulay bipartite graphs</a>, Arch. Math. (Basel) 68(2) (1997), 124-128. %H A323658 J. Herzog and T. Hibi, <a href="https://doi.org/10.1007/s10801-005-4528-1">Distributive lattices, bipartite graphs and Alexander duality</a>, J. Algebraic Combin. 22(3) (2005), 289-302. %H A323658 M. Mahmoudi and A. Mousivand, <a href="https://doi.org/10.1007/s12188-009-0032-1">An alternative proof of a characterization of Cohen-Macaulay bipartite graphs</a>, Abh. Math. Semin. Univ. Hambg. 80(1) (2010), 145-148. %H A323658 R. H. Villarreal, <a href="https://doi.org/10.1007/BF02568497">Cohen-Macaulay graphs</a>, Manuscripta Math. 66(3) (1990), 277-293. %H A323658 R. H. Villarreal, <a href="http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262007000200009">Unmixed bipartite graphs</a>, Rev. Colomb. Mat. 41(2) (2007), 393-395. %H A323658 R. Zaare-Nahandi, <a href="https://doi.org/10.1007/s40840-014-0100-2">Cohen-Macaulayness of bipartite graphs, revisited</a>, Bull. Malays. Math. Sci. Soc. 38(4) (2015), 1601-1607. %e A323658 Example: For n = 4 the a(4) = 7 solutions are given by the edge sets %e A323658 E1 = {(1,5), (1,7), (2,6), (2,7), (2,8), (3,7), (4,8)}, %e A323658 E2 = {(1,5), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)}, %e A323658 E3 = {(1,5), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}, %e A323658 E4 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (4,8)}, %e A323658 E5 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}, %e A323658 E6 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)}, %e A323658 E7 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}. %Y A323658 Cf. A006455, A323502. %K A323658 nonn,hard,more %O A323658 0,4 %A A323658 _M. Farrokhi D. G._, Jan 23 2019