cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323658 Number of bipartite graphs associated with connected transitive oriented graphs.

This page as a plain text file.
%I A323658 #15 Jul 23 2019 08:53:38
%S A323658 1,1,1,2,7,25,133,854
%N A323658 Number of bipartite graphs associated with connected transitive oriented graphs.
%C A323658 Also the number of unlabeled connected Cohen-Macaulay bipartite graphs up to graph isomorphism.
%C A323658 If G is an oriented graph with vertex set {1,...,n}, then the associated bipartite graph is a bipartite graph B(G) with parts {a1,...,an} and {b1,...,bn} such that ai ~ bj if (i,j) is an edge in G.
%H A323658 M. Estrada and R. H. Villarreal, <a href="https://doi.org/10.1007/s000130050040">Cohen-Macaulay bipartite graphs</a>, Arch. Math. (Basel) 68(2) (1997), 124-128.
%H A323658 J. Herzog and T. Hibi, <a href="https://doi.org/10.1007/s10801-005-4528-1">Distributive lattices, bipartite graphs and Alexander duality</a>, J. Algebraic Combin. 22(3) (2005), 289-302.
%H A323658 M. Mahmoudi and A. Mousivand, <a href="https://doi.org/10.1007/s12188-009-0032-1">An alternative proof of a characterization of Cohen-Macaulay bipartite graphs</a>, Abh. Math. Semin. Univ. Hambg. 80(1) (2010), 145-148.
%H A323658 R. H. Villarreal, <a href="https://doi.org/10.1007/BF02568497">Cohen-Macaulay graphs</a>, Manuscripta Math. 66(3) (1990), 277-293.
%H A323658 R. H. Villarreal, <a href="http://www.scielo.org.co/scielo.php?script=sci_arttext&amp;pid=S0034-74262007000200009">Unmixed bipartite graphs</a>, Rev. Colomb. Mat. 41(2) (2007), 393-395.
%H A323658 R. Zaare-Nahandi, <a href="https://doi.org/10.1007/s40840-014-0100-2">Cohen-Macaulayness of bipartite graphs, revisited</a>, Bull. Malays. Math. Sci. Soc. 38(4) (2015), 1601-1607.
%e A323658 Example: For n = 4 the a(4) = 7 solutions are given by the edge sets
%e A323658 E1 = {(1,5), (1,7), (2,6), (2,7), (2,8), (3,7), (4,8)},
%e A323658 E2 = {(1,5), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)},
%e A323658 E3 = {(1,5), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)},
%e A323658 E4 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (4,8)},
%e A323658 E5 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)},
%e A323658 E6 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)},
%e A323658 E7 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}.
%Y A323658 Cf. A006455, A323502.
%K A323658 nonn,hard,more
%O A323658 0,4
%A A323658 _M. Farrokhi D. G._, Jan 23 2019