cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323672 Expansion of e.g.f. exp(exp(x)*BesselI(1,2*x)/x - 1).

This page as a plain text file.
%I A323672 #8 Jan 29 2019 05:01:18
%S A323672 1,1,3,11,50,267,1633,11195,84745,700332,6262087,60146704,616841371,
%T A323672 6720592647,77453291594,940701503518,12001369992614,160373548837863,
%U A323672 2238995849944224,32584082576638311,493289434851850445,7754247825363510168,126354223534523911670,2131014061115010861375
%N A323672 Expansion of e.g.f. exp(exp(x)*BesselI(1,2*x)/x - 1).
%F A323672 a(0) = 1; a(n) = Sum_{k=1..n} A001006(k)*binomial(n-1,k-1)*a(n-k).
%p A323672 seq(n!*coeff(series(exp(exp(x)*BesselI(1,2*x)/x-1),x=0,24),x,n), n=0..23); # _Paolo P. Lava_, Jan 28 2019
%t A323672 nmax = 23; CoefficientList[Series[Exp[Exp[x] BesselI[1, 2 x]/x - 1], {x, 0, nmax}], x] Range[0, nmax]!
%t A323672 a[n_] := a[n] = Sum[Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
%Y A323672 Cf. A001006, A304788.
%K A323672 nonn
%O A323672 0,3
%A A323672 _Ilya Gutkovskiy_, Jan 23 2019