This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323710 #17 Jun 19 2025 09:19:15 %S A323710 1,3,2,7,8,6,4,5,128,24,256,14,64,12,16,15,32,384, %T A323710 340282366920938463463374607431768211456,56,16777216,768, %U A323710 115792089237316195423570985008687907853269984665640564039457584007913129639936,10,16384,192,18446744073709551616,28,4096,48 %N A323710 a(n) is the symmetrical of n via transport of structure from binary trees, where the binary tree of n is built as follows: create a root with value n and recursively apply the rule {write node's value as (2^c)*(2*k+1); if c>0, create a left child with value c; if k>0, create a right child with value k}. %C A323710 Let f denote the bijection that maps positive integers onto binary trees, defined in the name; let g be its inverse; let r denote the symmetry on binary trees (i.e., starting from the root, r recursively swaps left and right children). By definition a(n) = g(r(f(n))). %C A323710 If instead of r, one uses s, the operation that swaps the left and right children of the root, without recursion, then one gets g(s(f(n))) = A117303(n). %C A323710 Better leave a(39) = 2^340282366920938463463374607431768211456 not fully evaluated. %H A323710 Alois P. Heinz, <a href="/A323710/b323710.txt">Table of n, a(n) for n = 1..38</a> %F A323710 a(a(n)) = n. %F A323710 a(n) = n iff n is in A323752. %e A323710 100 = (2^2)*(2*12+1) and recursively, 2 = (2^1), 12 = (2^2)*(2*1+1). We then have the following binary tree representation of 100: %e A323710 100 %e A323710 / \ %e A323710 2 12 %e A323710 / / \ %e A323710 1 2 1 %e A323710 / %e A323710 1 %e A323710 Erase the numerical values, just keep the tree structure: %e A323710 o %e A323710 / \ %e A323710 o o %e A323710 / / \ %e A323710 o o o %e A323710 / %e A323710 o %e A323710 Take its symmetrical: %e A323710 o %e A323710 / \ %e A323710 o o %e A323710 / \ \ %e A323710 o o o %e A323710 \ %e A323710 o %e A323710 Compute back new numerical values from the leafs (value: 1) up: %e A323710 (2*1+1) = 3; (2^1)*(2*3+1) = 14; (2^14)*(2*3+1) = 114688 %e A323710 114688 %e A323710 / \ %e A323710 14 3 %e A323710 / \ \ %e A323710 1 3 1 %e A323710 \ %e A323710 1 %e A323710 So, a(100) = 114688. %p A323710 a:= proc(n) option remember; `if`(n=0, 0, (j-> %p A323710 (2*a(j)+1)*2^a((n/2^j-1)/2))(padic[ordp](n, 2))) %p A323710 end: %p A323710 seq(a(n), n=1..38); # _Alois P. Heinz_, Jan 24 2019 %t A323710 f[0]:=x %t A323710 f[n_]:=Module[{c,k},c=IntegerExponent[n,2];k=(n/2^c-1)/2;o[f[c],f[k]]] %t A323710 g[x]:=0 %t A323710 g[o[C_,K_]]:=(2^g[C])(2g[K]+1) %t A323710 r[x]:=x %t A323710 r[o[C_,K_]]:=o[r[K],r[C]] %t A323710 a[n_]:=g@r@f[n] %t A323710 Table[a[n], {n, 1, 30}] %Y A323710 Cf. A117303 (variant where swap left/right is not recursively applied). %Y A323710 Cf. A323665. %Y A323710 Cf. A323752 (fixed points of this sequence). %K A323710 nonn %O A323710 1,2 %A A323710 _Luc Rousseau_, Jan 24 2019