cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323716 a(n) = Product_{k=0..n} (3^k + 1).

This page as a plain text file.
%I A323716 #11 Aug 31 2023 02:54:24
%S A323716 2,8,80,2240,183680,44817920,32717081600,71584974540800,
%T A323716 469740602936729600,9246374028206585446400,
%U A323716 545998386365598870609920000,96722522147893108730806108160000,51402410615320609490117059732766720000
%N A323716 a(n) = Product_{k=0..n} (3^k + 1).
%H A323716 G. C. Greubel, <a href="/A323716/b323716.txt">Table of n, a(n) for n = 0..64</a>
%F A323716 a(n) ~ c * 3^(n*(n+1)/2), where c = A132323 = QPochhammer[-1, 1/3] = 3.12986803713402307587769821345767...
%t A323716 Table[Product[3^k+1, {k, 0, n}], {n, 0, 12}]
%t A323716 Table[QPochhammer[-1, 3, n+1], {n, 0, 12}]
%o A323716 (PARI) a(n) = prod(k=0, n, 3^k+1); \\ _Michel Marcus_, Jan 25 2019
%o A323716 (Magma) [(&*[3^j+1: j in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Aug 30 2023
%o A323716 (SageMath) [product(3^j+1 for j in range(n+1)) for n in range(21)] # _G. C. Greubel_, Aug 30 2023
%Y A323716 Cf. A028361, A034472, A132323, A323715.
%K A323716 nonn
%O A323716 0,1
%A A323716 _Vaclav Kotesovec_, Jan 25 2019